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Abstract—Competitive board games have provided a rich and
diverse testbed for artificial intelligence. This paper contends
that collaborative board games pose a different challenge to
artificial intelligence as it must balance short-term risk mitigation
with long-term winning strategies. Collaborative board games
task all players to coordinate their different powers or pool
their resources to overcome an escalating challenge posed by
the board and a stochastic ruleset. This paper focuses on the
exemplary collaborative board game Pandemic and presents a
rolling horizon evolutionary algorithm designed specifically for
this game. The complex way in which the Pandemic game
state changes in a stochastic but predictable way required a
number of specially designed forward models, macro-action
representations for decision-making, and repair functions for
the genetic operations of the evolutionary algorithm. Variants of
the algorithm which explore optimistic versus pessimistic game
state evaluations, different mutation rates and event horizons are
compared against a baseline hierarchical policy agent. Results
show that an evolutionary approach via short-horizon rollouts
can better account for the future dangers that the board may
introduce, and guard against them. Results highlight the types
of challenges that collaborative board games pose to artificial
intelligence, especially for handling multi-player collaboration
interactions.

Index Terms—Artificial Intelligence, Rolling Horizon Evolu-
tionary Algorithm, Board Games, Game Playing agents.

I. INTRODUCTION

PERHAPS some of the most iconic and publicly resonant
moments for Artificial Intelligence have been competi-

tions with human masters in board game such as Chess [1]
and Go [2]. Modern-day academic research has explored a
diverse set of algorithms for playing board games [3]–[5]
and card games [6], [7] which focus on player-versus-player
competition or, at best, team-versus-team competition [8], [9].
However, a large portion of modern board games eschew
competition between players and instead invite collaborative
play, where all players must work together to survive (and
win) against a rule-based system which presents an escalating
challenge. Common design patterns for such collaborative
games are (a) player roles specializing in certain tasks, (b)
a rule-based system with high stochasticity (via drawn cards
or dice) that introduces more and more complications and
challenges to the game state, (c) a race against time for players
to achieve victory, and (d) a dilemma between performing
actions that mitigate current threats and actions that lead to
victory. Pandemic (Z-Man, 2008) is among the most popular
collaborative board games and is fairly straightforward to
play: players take different specialized roles and strive to cure
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diseases while more and more cities on the board are infected
with disease cubes. Players must balance between removing
disease cubes (to stop the game from ending) while also
collecting cards in order to cure diseases (to win the game).
What makes Pandemic particularly interesting is that infections
are not chosen completely randomly; Pandemic implements a
clever system of recycling past infected cities. This means that
players can anticipate the next few cities that will be infected
(but not the order in which they will be infected) and strategize
how best to minimize the risk.

This paper argues that collaborative board game play poses
its own set of challenges to Artificial Intelligence. While com-
petitive play challenges AI to anticipate what the other player
might do or how best to block another player, collaborative
board game play challenges AI to best coordinate with other
players. When all players are controlled by AI, a plan can
be formulated for every player (by a single controller) and
executed to the letter. This is actually how human players
also handle a collaborative board game by making a strategy
for every player’s move and executing it (or replan, if cir-
cumstances change). The AI challenge of collaborative board
game play is thus not to align each player’s goal (as a single
controller can control every player) but instead (a) to balance
between short-term damage control and long-term strategies
that win the game, (b) to optimally take advantage of different
players’ roles and special abilities, and (c) to anticipate the
best- and worst-case scenarios of upcoming events and how
they will affect the game state. Due to the stochastic nature of
escalating threats posed by the game system, human players
similarly perform risk assessment and mitigation in the hopes
of avoiding the worst outcomes which usually lead to a loss.

This paper expands on recent experiments in applying a
Rolling Horizon Evolutionary Algorithm (RHEA) for play-
ing Pandemic [10] which primarily explored the impact of
different optimistic and pessimistic functions for evaluating
the game-state. This paper expands this work by exploring
the impact of different parameters such as mutation operators,
generations, and plan horizon to the algorithm’s performance.
A broader analysis of the robustness of the algorithm in
random game setups at different difficulty levels also highlight
the strengths and limitations of this approach. The structure of
the paper is as follows: Section II discusses related work on
board game play and RHEA methods; Section III explains
the components, rules, and actions available in Pandemic;
Section IV presents the game state, action representation and
the RHEA algorithm; Section V presents a broad set of exper-
iments assessing the algorithm’s performance under different
circumstances; Section VI discusses the findings and suggests
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future work while Section VII concludes the paper. The code-
base for the Pandemic testbed and agents is publicly available
at: https://github.com/konsfik/Pandemic-AI-Framework.

II. RELATED WORK

Until the early 2000s, game playing AI was mostly applied
to deterministic, fully observable, adversarial games such as
chess, hex and Othello. Early board game play focused on
MiniMax and its variants, such as α− β pruning [11]. IBM’s
Deep Blue applied MiniMax to defeat the chess champion
Garry Kasparov in 1997 [12]. In the early 2000s, Monte
Carlo Tree Search (MCTS) started to appear as an alter-
native to MiniMax. MCTS operates via an iterative process
of selection, expansion, simulation and backpropagation that
gradually expands the game tree in a stochastic manner [13].
MCTS enabled several boardgame-playing programs [14]–
[18] that could perform comparably to professional human
players, culminating in the success of DeepMind’s AlphaGo
[19] against multiple champions in the board game Go.

The Rolling Horizon Evolutionary Algorithm [20] (RHEA)
is an evolutionary planning algorithm which applies evolution
directly onto the decision-making process, similar to how
MCTS uses roll-outs and the generative model. RHEA op-
erates as follows: starting from a specific game state, RHEA
evolves a set of action sequences, using the game’s forward
model to estimate their future consequences. When evolution
ends, RHEA selects the first action of the best sequence
and applies it to the game state. This process is performed
repeatedly until the game is over. RHEA has been applied
to a number of digital games [21]–[24], as well as modern
board games such as Splendor (Space Cowboys, 2014) [25]. In
many cases, the performance of RHEA is at least comparable
to that of MCTS. RHEA seems to operate better in coarse-
grained state representations, e.g. when using macro actions
instead of single actions [20]. RHEA is dependent on a fitness
function, which may seem like a drawback compared to MCTS
which—at least in theory—can function without any domain
knowledge [13]. However, machine learning [26] or Monte-
Carlo rollouts [22] can replace biases of an ad-hoc fitness
function. Another control point for the algorithm’s optimiza-
tion is the population-seeding policy, which can provide a
better starting point in the evolutionary process. For instance,
Gaina et al. [27] seed a population using a 1-step-lookahead
method or a MCTS method and show that both shortcuts have
a positive effect on the algorithm’s performance, especially
when the computational resources are limited. Other seeding
options include re-using populations from previous decision
points [22], [28] or employing a machine-learned policy [26].

As noted in Section I, modern commercial board games
have been a rich and diverse testbed for modern AI methods.
MCTS has been applied to numerous board games such as
Settlers of Catan (Kosmos, 1995) [3], [29], Thurn and Taxis
(Hans im Glück, 2006) [30], Mr. Jack (Hurrican, 2006) [5]
as well as card games such as Lords of War (Black Box,
2012) [7] and Magic: the Gathering (Wizards of the Coast,
1993) [6]. Evolutionary algorithms have been leveraged to play
Splendor [31] via RHEA and 7 Wonders (Repos, 2010) [32]

via genetic programming. AI agents have also been leveraged
to playtest and improve the balance of games such as Ticket to
Ride (Days of Wonder, 2004) [4] and Dominion (Rio Grande,
2008) [33]. Finally, of special note is the competitive game
Hanabi (Abacusspiele, 2010) which is played in teams, and
thus AI agents must adapt to their collaborators’ mindset [34].

While preparing this publication, Sauma-Chacón and Eger
introduced PAIndemic, an A* based agent for playing Pan-
demic [35]. Identifying the need for more collaborative game-
play, the authors developed seven heuristics which were ag-
gregated as a weighted sum to evaluate the state. Interestingly,
PAIndemic makes a plan from the current game state without
simulating the stochastic game-state changes, and then perform
a hundred rollouts on the forward model. PAIndemic is similar
to the proposed RHEA agent but does not use macro-actions,
and it seems to perform well. It could be worth investigating
whether the two methods could be integrated, e.g. using the
heuristics of [35] for decisions that the RHEA has no control
over, such as choosing cards to share or to discard.

III. PANDEMIC GAME TESTBED

Pandemic is a cooperative game that can be played by 2
to 4 players. Players act as a group of scientists who try to
save the world from four deadly diseases. Their goal is to
cure those diseases, while micro-managing various threats that
occur on the map during gameplay. This section summarizes
the game rules, initial setup, and way that the game becomes
progressively harder (but more predictable).

The game takes place on a simplified version of the world
map, which includes 48 cities in the form of a graph, as shown
in Fig. 1. Players can move their pawns from city to city via
the available edges between cities. Cities are divided into four
colors corresponding to a specific disease type, with 12 cities
per color. The version of Pandemic implemented in this paper
has the following components: 4 player pawns, 4 role cards
(operations expert, researcher, medic and scientist), 48 city
cards (of four colors), 6 epidemic cards (although most games
reported here use fewer epidemic cards), 48 infection cards
(one per city), 96 disease cubes (24 per color), and 6 research
station tokens. The tabletop Pandemic game has 3 more player
roles and 5 event cards which are mixed with the city cards
and allow for special actions played out of turn. In order to
simplify the game’s state-space, these additional roles (e.g.
the dispatcher, who allows a player to move another player’s
pawn) and event cards (which could allow e.g. ‘actions’ during
the infection phase) are not used in this AI testbed.

The game’s initial setup is a complex process which also
depends on the number of players and the game difficulty.
First, nine infection cards are drawn from the shuffled infection
deck, and nine cities are infected with a total of 18 disease
cubes (3 cubes for the first 3 cities, 2 cubes for the next 3
cities, 1 cube for the last 3 cities). Infection cards drawn in
this way are placed in the infection discard pile. In the second
step, players are assigned a role and a pawn colored after
the role. All players’ pawns are placed on Atlanta, together
with the first research station. Then players are dealt their
initial hands, consisting of city cards. The number of initial
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city cards per player depends on the number of players (4
cards for two players, 3 cards for three players, 2 cards for
four players). Finally, the player cards’ deck is prepared: this
deck is where players will draw new cards from at the end of
their turn. All remaining city cards (not dealt to players) are
mixed with a number of epidemic cards in a specific manner
(4 epidemic cards for easy, 5 for medium, 6 for hard games).
The city cards are equally split into as many sub-stacks as
the number of epidemic cards (4, 5 or 6), and one epidemic
card is added to each sub-stack. Sub-stacks are individually
shuffled and then joined together, one on top of another,
without mixing the cards between them. This ensures that
epidemics are distributed in the player cards’ deck in a uniform
manner. After making the player deck, the game begins.

Each player acts in their turn, with the same player order
kept throughout the game. On their turn, players can take up
to four actions. There are 8 types of actions available to all
players, although certain player roles modify the prerequisites
and effects of certain actions. Four action types allow players
to move around the board, specifically: Drive/Ferry (move
along an edge to an adjacent city), Direct Flight (discard a city
card to move to the city named on the card), Charter Flight
(discard the city card that matches the player’s current city to
move to any city), Shuttle Flight (move from a city with a
research station to any other city with a research station). The
other four actions allow players to work towards winning (and
against losing) the game. Build a Research Station allows
a player to place a research station in the city they are in
by discarding a card named after that city. If all 6 research
stations have been built, a research station is moved to the
current city from anywhere on the board. Treat Disease lets a
player remove 1 disease cube from the city they are in, placing
it back in the cube supply. If a disease has been cured, this
action removes all cubes of that color from the player’s current
city. Share Knowledge allows a player in the same city with
another player to give or take a card from the other player’s
hand if the card is named after the city. Players with more than
7 cards must immediately discard extra cards. Cure Disease
allows a player at any research station to discard 5 city cards
of the same color to cure the disease of that color.

Different roles modify these actions. The operations expert
role can move from a research station to any city by discarding
any city card (once per turn), and can build a research station in
their current city without discarding a city card. The researcher
role does not need to be in the same city to give a card, as long
as the other player is in the city named in the card. The medic
role can remove all cubes of the same color with one treat
disease action, and if the disease is cured then all cubes of that
color in the city are removed automatically (no need to spend
an action). The scientist role must discard only 4 city cards of
the same color to cure a disease. Each role has a specialty: the
operations expert can build and exploit research stations, the
medic can treat disease, the researcher can share knowledge
and the scientist can cure diseases. These roles were chosen
for this paper due to their clear-cut specialization.

A core design pattern of Pandemic and most collaborative
games is the escalating difficulty imposed by the game’s rules
as the game progresses. In Pandemic, difficulty escalates in

several ways which are tightly connected with the core game
loop, i.e.: a player takes up to four actions (described above),
then draws two cards from the player deck (discarding excess
cards above 7 from their hand), then draws a number of
cards from the infection deck. The number of infection cards
drawn increases as the game progresses (discussed later). Each
infection card drawn lists a city: if a city has less than 3
disease cubes of the same color, then a disease cube of a
color appropriate to the city is added. If an infection would
add a cube in a city that already has 3 cubes of this color, an
outbreak occurs, the outbreak counter increases, and instead
of adding one cube to the city all adjacent cities receive a cube
of that color—which may trigger additional outbreaks.

While outbreaks and infections increase the number of
disease cubes on the board, the core way in which difficulty
ramps up is through the epidemic card’s effects. If an epidemic
is drawn from the players’ deck, the number of cards drawn in
every infection phase from now on may increase (2 infection
cards for 0-2 epidemics, 3 cards for 3-4 epidemics, 4 for 5-6
epidemics). Afterwards, the bottom-most card on the infection
deck receives 3 disease cubes of that color and is discarded;
then, all discarded infection cards are shuffled and placed on
top of the deck. Once this is done, the next infection phase
will draw infection cards among those previously discarded,
ensuring that cubes are placed in cities that were infected
before. The epidemic card mechanic increases the difficulty
as the same cities keep being infected (which can trigger
outbreaks), but it also makes the game “readable” to players
as they can anticipate which cities will be infected (but not
their order) and focus efforts on saving those cities.

The game is won if the players discover cures for all four
disease types. The game is lost under any of the following
conditions: outbreaks (if the outbreaks counter reaches 8),
disease cubes (if there are not enough disease cubes to
complete an infection step), player cards (if there are not
enough player cards for the player to draw from). The last
condition is inevitably met after a specific number of rounds.

It is evident that players risk failure if they neglect either
the disease cubes on the board or the number of outbreaks.
At the same time players are forced to find cards of the same
color (through the share knowledge action, or by drawing them
from the deck) in order to cure diseases before the player deck
runs out. The balance between pessimistic play (i.e. warding
against current threats that may lead to failure) and optimistic
play (i.e. taking small steps towards victory) is an important
dimension of Pandemic both for humans and for AI agents.

IV. METHODOLOGY FOR AI GAME PLAYING

This section discusses the RHEA implementation that han-
dles decision-making of all players in a game of Pandemic, as
well as the modifications to the forward model and game-state
abstractions necessary to make it work.

A. Game State Representation & Forward Model

The game-state is represented as a city graph: each city
stores the player pawns, disease cubes, and research stations
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that exist there. The game-state also stores the current out-
breaks and infection rates, as well as each player’s cards in
their hand. Finally, the game-state stores the discarded and
face-down decks for player cards and infection cards, even
though the agents’ decision-making does not use this addi-
tional data; it is only used for the forward model simulations.

Simulating future states in Pandemic is challenging due
to the complex way in which the player deck is constructed
initially and the way the infection deck changes by recycling
discarded cards during play. For the player deck, the forward
model keeps track of the size of each sub-stack (see Section
III) and whether it still contains an epidemic card. To ran-
domize the forward model, all city cards (not epidemics) in
the player deck are shuffled together, and sub-stacks of the
right size are created from this shuffled global set; after this,
sub-stacks still containing epidemics have an epidemic card
shuffled into them and the sub-stacks are placed one on top
of the other to create the player deck. For the infection deck,
after the first epidemic the deck will consist of a number of
sub-stacks which contain past discarded cards that have been
reshuffled. The game-state keeps track of these sub-stacks and
which infection cards are in each; to randomize the forward
model, each sub-stack is shuffled individually and then placed
one on top of the other in the right order. These steps ensure
that the distribution of cards is maintained.

B. Action Representation

Since players have four actions per turn and can move in
different ways around the board, the combination of possible
actions is prohibitive for an efficient AI agent. Instead, the
action space for Pandemic agents is represented via macro-
actions, i.e. a sequence of one or more actions which includes
movement actions for getting to the required location and
the action taken at that location. The system produces all
the available macro-actions in a compositional manner. It
first composes all the possible movement sequences, including
simple movement as well as movement using special abilities
and cards. Afterwards, it selects the movement sequences that
can lead the player to a specific non-movement action on the
map. The final product of this process is an almost complete
set of all the possible courses of action that the player could
take and that would make sense to consider. The following
macro-actions are considered:
• Treat disease macro-actions: the system finds all cities

with one or more disease cubes and finds the optimal
path of [0, N − 1] move actions to reach it, followed by
a treat disease action at that city.

• Cure disease macro-actions: if the current player has
enough cards to cure a disease (5 cards, or 4 for Scientist)
then the macro-action finds the optimal path of [0, N−1]
move actions to the closest research station, followed by
a cure disease action at that city.

• Build research station macro-actions: the system first
finds all cities in which the player can build a research
station: for the Operations Expert that would be any city
that does not already have a research station, and for other
players it would be a city for which they have a card in

their hand. The macro-action then finds the optimal path
of [0, N −1] move actions to all candidate cities (as long
as those moves do not cost the city card in question),
followed by a build action at that city.

• Share knowledge macro-actions: this is a complex
system which finds all cities where the player can give
or take cards, or to wait there for another player (so that
they can exchange cards later). The system first scans the
players’ hands, in order to create a list of all the possible
card exchanges between players. For each exchange, it
finds the city where the exchange must take place. For
every exchange location, it then finds all the ways that the
current player can get there. Finally, it combines move
actions with the following share knowledge action, or a
‘wait’ action if the other player is not yet in that location.

• “Walk away” macro-actions: this special set of macro-
actions only consists of N move actions with no end-goal.
Any city that is exactly N move actions from the current
player’s city is chosen, and the player moves to that city.
These macros consist of move sequences of any type, and
may even spend “valuable” cards. However, these macros
are rarely used as it is quite improbable that none of the
other macro-actions are available.

Each of these macro-actions can include any number of
movement actions calculated based on the shortest action
sequence (see Fig. 1). Eligible movement actions include any
drive/ferry action and shuttle flight action (as they do not
require spending cards) and any direct flight and charter flight
for which the card spent does not reduce the overall chances
of curing a disease. The same metric is used to choose cards
to discard in case the player has more than 7 cards, and for
selecting cards to give or take through the share knowledge
macro-actions. For any disease t, the ability to cure the disease
is measured via A(t) in Eq. (1) which depends on the best
hand across all players (in terms of cards of this type).

A(t) =

{
1 if t cured
maxp=1...PAc(p, t) otherwise

(1)

Ac(p, t) =

{
1 if h(p, t) ≥Cd(p)
h(p,t)
Cd(p)

otherwise
(2)

where P is the number of players, h(p, t) is the number of
cards of type t in the hand of player p and Cd(p) is the number
of cards needed for player p to cure a disease (Cd = 4 for the
Scientist, and Cd = 5 for every other role). Ac(p, t) of Eq. (2)
captures each player’s ability to cure disease t.

Note that in the above descriptions, N refers to the number
of actions that the player wishes to “invest” for such a macro-
action. In experiments reported in this paper, we consider
only the macro-action that can be completed within a player’s
current turn, i.e. with N equal or lower the player’s remaining
actions (max. 4, if the player has not taken any actions yet).

C. RHEA for Pandemic

The RHEA implemented in this paper applies a number
of mutations on an initial seed produced by a hand-crafted
‘hierarchical policy’ agent (HPA), discussed in Section IV-C2.
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Fig. 1: A view of the Pandemic board, highlighting the areas accessible to Player 2 (P2, in orange) with the different move
options (measuring the shortest route). P2 can move without spending a card to the orange highlighted areas, spending a number
of actions shown inside each city. P2 can take a shuttle flight from Atlanta to Hong Kong (both have research stations). P2
can spend the Manila card to travel faster to Manila and Taipei via a direct flight from Chicago. P2 can also travel to Manila
via drive/ferry and spend the Manila card there (using the charter flight) to travel anywhere in the world. All cities accessible
by spending the red Manila card are shown next to the city with the least actions spent inside a red rectangle.

This HPA has a small degree of randomness but largely follows
a carefully crafted order of macro-actions, only choosing low-
priority ones if no high-priority macro-actions are possible.

The RHEA for Pandemic follows a 1+1 evolutionary strat-
egy with the following steps:

1) Initialization: an individual is generated via HPA
2) Evaluation: the individual’s macro-actions are simulated

in one or more instances of the forward model and the
final state(s) evaluated via a selected heuristic.

3) Mutation: the individual is copied and mutated, to form
the offspring which is also evaluated.

4) Replacement: If the offspring is better than its parent, it
replaces the parent. Otherwise it is discarded.

5) After a number of iterations, the process stops and
the algorithm returns the first action of the current
individual. Otherwise, the algorithm repeats steps 3-5.

1) Genetic encoding: Each individual consists of genes that
are neither single actions nor macro actions, but a higher-level
construct that represents a set of macro actions that may occur
within the span of a player’s turn. Every individual consists
of an exact number of such genes, equal to the agent’s look-
ahead (H), measured in player turns. Most experiments in this
paper use 5 genes per individual (H = 5).

2) Initialization: The initial seed of the RHEA is generated
by the hierarchical policy agent (HPA). The HPA enumerates
all possible macro-actions of a specific type (based on a prede-
fined order): if there are any macro-actions of this type then a
random one of them is chosen and executed, otherwise the next
type of macro-actions is enumerated etc. The following order
for HPA was chosen following intuition and experimentation:

1) Cure disease macro-actions

2) Treat disease macro-actions only for cities with 3 disease
cubes of the same type

3) Share knowledge macro-actions (take or give) with
immediate effect, otherwise wait in position to share
knowledge on another player’s turn (take or give)

4) Build research station macro-actions (if there are less
than 6 research stations)

5) Treat disease macro-actions only for cities with 2 disease
cubes of the same type

6) Treat disease macro-actions only for cities with 1 disease
cube of the same type

7) Walk away (i.e. move randomly using all remaining
actions left for this player’s turn)

3) Genetic operators: The mutation process is implemented
as a partial destruction and stochastic repair, described below.
The algorithm iterates over the genes of the current individual.
A fixed “mutation rate” determines the probability that a gene
will be mutated. If a gene is selected for mutation, a macro
action from within that gene (i.e. player’s turn) is randomly
selected. This macro action, as well as its consequent ones
(within that gene) are deleted, while the previous ones remain
intact. Once the selected gene has been (partially) destroyed,
the repair process takes place: a randomized game state is
rolled forward, by using the macro-actions that are inscribed
in the genome, up to the point of destruction. During this
forward-rolling of the state, there may be macro actions that
are not applicable due to the stochastic nature of the forward
model. In that case, all incompatible actions are ignored: e.g.
when performing a macro-action to treat disease in London,
but London in this rollout has no disease cubes, the player
performs the move actions to get to London but “wastes” the
treat disease action at the end. As soon as the state is rolled
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to the point of repair, a Random-order Policy Agent (RPA)
selects the next macro action, while the HPA instantiates any
remaining actions until the gene is fully repaired. When this
process is over, the algorithm continues to iterate over the
individual’s genes, possibly applying more mutations. If during
the iteration no gene was selected, then one gene is selected
at random and mutated as above.

The RPA randomizes the order of the following types of
macro-actions. Once an order is set, RPA finds all possible
macro-actions of that type and selects a random one; if none
exists, it checks the next type of macro-actions etc.

1) Cure disease macro-actions
2) Treat disease macro-actions only for cities with 3 disease

cubes of the same type; if none exist, treat disease
macro-actions for cities with 2 disease cubes of the same
type; if none exist, treat disease macro-actions for cities
with 1 disease cubes of the same type.

3) Share knowledge macro-actions (take or give) with
immediate effect, otherwise wait in position to share
knowledge on another player’s turn (take or give)

4) Build research station macro-actions (if there are less
than 6 research stations)

4) Fitness definitions: Based on the end-game conditions of
Pandemic (see Section III), there are several ways to evaluate
any given state: optimistically in terms of the cards needed to
discover every cure, or pessimistically in terms of the disease
cubes or outbreaks left before the game is lost. The following
state evaluation (fitness) functions are tested in this paper:

fo,d =
1

4
Nd (3)

fo,A =
1

1.3

(
1

4

4∑
t=1

A(t) + 0.3·Nd

)
(4)

fc,a =
1

4

4∑
t=1

Nc(t)

24
(5)

fc,m = mint=1...4
Nc(t)

24
(6)

fc,p =

4∏
t=1

Nc(t)

24
(7)

fb = 1− Nb

8
(8)

where Nd is the number of cured diseases, Nc(t) is the number
of cubes for disease t remaining off the board, and Nb is the
number of outbreaks that have occurred so far.

The fitness functions account for cured diseases (fo,d) or
the general ability to cure diseases (fo,a), different ways to
calculate disease cubes remaining off the board (average,
minimum, or product) and finally the number of outbreaks
(as the game ends at 8 outbreaks). All fitness scores are
normalized to [0, 1] and a high fitness indicates a better game
state. Of note is the addition of 0.3·Nd in Eq. (4) which gives
additional pressure if the disease is already cured compared
to instances where the disease can be cured.

Fig. 2: Ten testbed setups (black dots) via k-medoids clustering
on the 1000 ‘easiest’ setups based on HPA performance.

V. EXPERIMENT

To assess the performance of the RHEA agent which con-
trols all player’s actions, a deterministic environment is ideal.
However, Pandemic includes many stochastic elements during
game setup and when infection cards are reshuffled during the
game due to epidemic cards. Experiments in this paper control
for the former (initial game setup) by using 10 fixed game
starts (including players’ roles and order of play, player decks
and infection decks) although resolving epidemics during the
game will still introduce some stochasticity. The HPA, which
is used as a baseline throughout this paper, is used to find
representative game setups that use 4 epidemic cards (easy
difficulty) and the same four player roles in the same turn
order: (1) Operations expert, (2) Medic, (3) Researcher, (4)
Scientist. A set of 104 random initial setups are tested by the
HPA, and the 103 easiest ones are chosen (i.e. where the HPA
has a higher win ratio in 100 trials of each game setup). To
select a smaller but representative set from these 103 setups,
ten initial setups were selected as the medoids from clustering
along the axes of win ratio (naturally between 0 and 1) and
duration (normalized based on the maximum game length, i.e.
23 turns). The distribution of the top 103 setups and the ten
medoids are shown in Fig. 2. The average win ratio for the
hierarchical policy agent for these setups is 8.3% (ranging
from 28% to 3%), and an average game duration of 19 turns
(ranging from 13.9 to 20.6 turns).

All experiments except Section V-E test these ten setups
with the same order of unseen cards, easy difficulty, and player
order as discussed above. Each setup is played until won or
lost for 100 runs. Performance metrics of note is the win ratio
in 100 runs, as well as improvement of RHEA in terms of win
ratio over the baseline HPA.

A. Impact of State Evaluation

A number of fitnesses are proposed in Section IV-C4 for
evaluating the state of the game: Eq. (3)-(4) are optimistic
(taking into account how “close” the game is to being won)
and Eq. (5)-(8) are pessimistic (taking into account how “far”
the game is to being lost). These fitnesses do not inherently
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consider whether the game is already won or lost. Variations
of each fitness are also tested: Eq. (9) assigns maximum fitness
when the game is won and minimum fitness when the game
is lost, while Eq. (10) rewards winning in the same way
but penalizes losing proportionately to the fitness score. The
p(f) formula hypothesizes that while losing should always
be penalized compared to staying in the game (via the Cp

constant), the game-state when losing can indicate how well
the agent could defend against a loss. In this paper Cp = 0.1.

w(f) =


1 if game won
f if game ongoing
0 if game lost

(9)

p(f) =


1 if game won
f if game ongoing
Cp·f if game lost

(10)

Reported experiments evolve the agent for 100 generations
and fitness is averaged from 5 rollouts of the macro-action
sequence using a different stochastic forward model each time.

1) Single evaluation: This experiment tests each fitness of
Section IV-C4 in its three variants: the average win ratio in
the ten testbed setups (from 100 trials in each setup) are
reported in Fig. 3a. An important observation is that pes-
simistic evaluations on their own perform much worse than the
HPA, or comparably when winning and losing conditions are
accounted for. Generally, the w(f) variant performs better than
the unprocessed fitness, while p(f) outperforms w(f) only for
fo,a. The optimistic fitnesses manage to steer the agent towards
winning the game more often: the best improvement over the
baseline (averaged across the ten setups) is 120% with w(fo,d).
In terms of other differences between the agents, optimistic
agents generally tend to play shorter games and lose much
faster than pessimistic agents. Indicatively, fo,d is the fastest to
lose, with lost games’ average duration at 14.3 player turns; in
contrast, fc,p is the slowest to lose (21.3 turns). Unsurprisingly,
pessimistic agents who prioritize keeping disease cubes off
the board rarely lose due to outbreaks or insufficient cubes:
indicatively, for fd,p only 22% of lost games are due to
epidemics and 6.3% due to disease cubes, compared to 56%
and 24% respectively for fo,a. Finally, optimistic agents tend
to use the share knowledge action more often than the HPA
while the opposite is true for pessimistic agents. Pessimistic
agents tend to use the treat disease action more often than the
HPA, while the opposite is true for optimistic agents. These
differences in actions favored are less pronounced when the
fitness is conditionally applied as w(f) or p(f).

2) Combined evaluation: While fitness functions measuring
how close players are to winning seem to perform well, opti-
mistic RHEA agents underestimate losing conditions and tend
to lose quickly. The hypothesis is that combining optimistic
and pessimistic fitnesses could allow agents to account for
both opportunities and dangers in their final state. For the
sake of this experiment, two fitness scores are averaged (one
optimistic, one pessimistic) and applied either on their own or
conditionally via Eq. (9) and Eq. (10).

The average win ratio for different combinations of state
evaluations, from 100 trials per setup, are reported in Fig. 3b.
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(a) State evaluation as single fitness
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(b) State evaluation as average fitness of the two fitness scores

Fig. 3: Average win ratio for the 10 test setups, using different
state evaluations (with or without win/loss conditions). The
dotted line is the win ratio of the hand-crafted HPA.

Unlike in Fig. 3a, the naive aggregated state evaluation often
performs better than the conditional variants, especially w(f).
While fo,d performed better on average than fo,a when applied
alone, in this case fitnesses that combine fo,a perform much
better. While differences are quite small among the most well-
performing agents, the best agent is p(

fo,a+fc,m
2 ) with an

average win ratio of 29.3%, (302% improvement over HPA).

B. Impact of Mutation Probabilities

Based on the experiments of Section V-A, the best agent
used p(

fo,a+fc,m
2 ) as its state evaluation. It should be noted

however that all experiments in Section V-A use a mutation
probability of 50%; this section explores instead how mutation
chances may impact the performance of the best RH agent.
Three constant mutation probabilities are tested: 100%, 50%
and 0%. With 100% mutation one macro-action is replaced
with one produced by the RPA in every player’s turn, while
with 0% chance only one player’s action will be mutated (trig-
gering the failsafe as discussed in Section IV-C3). In addition,
we test three variants where the mutation probability drops
during the course of evolution: 100% → 50%, 75% → 25%
and 50%→ 0%. The mutation rate starts at the left-most value
and decreases by a small increment per generation, until at the
end of evolution it reaches its right-most value.

As shown in Table I, the highest mutation rates (MR100%

and MR100%→50%) result in a higher win ratio at ∼35%. The
worst performing agent was with 0% mutation rate at 19%
win ratio. This observation may seem counter-intuitive at first
glance, as slow mutations were expected to more smoothly
guide evolution towards a solution, especially in this highly
stochastic simulation.
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Constant MR0% MR50% MR100%

Win Rate 19.5% 31.4% 34.9%
Dropping MR50%→0% MR75%→25% MR100%→50%

Win Rate 25.6% 31.4% 35.1%

TABLE I: Win rates for the agent with the best game-state
evaluation, when the mutation rate is constant or varies,
averaged across the 10 testbed games.

A possible explanation for the improved behavior at high
mutation rates is that certain parts of the gameplay require
more than one round in order to be properly executed. Share
knowledge actions are an obvious example. If one player’s
turn is mutated to go to a city and wait to share knowledge
but the next player’s action is not mutated to go to the
same city and complete the share knowledge action, the first
player’s actions are wasted. Similarly, if a mutation leads to
a new research station being built, some cities become easier
to reach for all players. However, if other players’ actions
are not mutated then the system will not re-calculate the
shortest path with the new research station node. It seems
that high mutation rates are better at supporting both types of
behaviors. Both MR100% and MR100%→50% have a higher
rate of share knowledge and build research station actions per
turn. Specifically, MR100%→50% takes a share knowledge 32%
more often than the worst performing MR0% and 56% more
often than the HPA, while the build research station action is
performed 17% more often than both MR0% and HPA.

C. Impact of Computational Resources

The number of generations and the number of repeated
rollouts for evaluation are two key parameters that can directly
affect both its performance (win ratio) and its required com-
putational resources. The former dictates how many “chances”
the agent is given to find a better solution. With more
generations, the probability of finding better solutions should
increase. Given the stochastic nature of the forward model, on
the other hand, more repetitions increase the accuracy of its
evaluation. While other experiments kept the number of gener-
ations and evaluations constant at 100 and 5 respectively, this
section explores their impact on performance and computation
time. This section uses the best RHEA agent found so far, with
p(

fo,a+fc,m
2 ) and MR100%→50%.

Table II shows how the best RHEA agent’s win ratio fluctu-
ates with the number of generations and number of evaluation
repetitions. Unsurprisingly, increasing either—or both—of the
parameters consistently leads to an improved performance.
The best win ratio (52.6%) is achieved with 200 generations
and 80 evaluation repetitions. To allow us to evaluate the
computational cost of raising the agent’s performance through
the examined parameters, Table II includes the computation
time per decision, calculated on a mid-tier desktop computer
running each evolution variant on a separate core (Intel i7-
8700 at 3.2GHz, 6-core CPU, 8GB RAM). Notably, the best
parameter pair of (200, 80) takes an average of 2.96 seconds
per decision, while the parameter-pair of (100, 5) yields a
performance of 32.4% at only 0.51 seconds per decision. In

Evaluation Repetitions
Gen. 1 5 10 20 40 80
25 11.7% 18.2% 19.5% 22.6% 24.3% 30.1%

(0.09s) (0.12s) (0.13s) (0.16s) (0.32s) (0.45s)
50 17.1% 27.1% 30.2% 28.3% 35.1% 40.0%

(0.17s) (0.31s) (0.30s) (0.41s) (0.55s) (0.78s)
100 23.8% 32.4% 38.9% 39.5% 43.7% 44.7%

(0.34s) (0.51s) (0.59s) (0.68s) (0.95s) (1.47s)
200 28.2% 39.5% 44.1% 48.7% 48.1% 52.6%

(0.73s) (0.92s) (1.07s) (1.36s) (1.84s) (2.96s)

TABLE II: Win ratio for different numbers of generations and
evaluation repetitions, with the time per decision in seconds
shown in parentheses.

this instance, for a relative performance gain of 62%, the
operational time increases almost six-fold.

The analysis in this section reaches an expected conclusion,
i.e. that the performance of the RHEA can improve beyond
what is reported in this paper if we provide it with more
computational resources. Experiments have not shown that the
win ratio plateaued, although it is expected that increasing the
win ratio will come at ever-greater computational effort. The
diminishing returns in terms of performance make the choice
of an appropriate parameter pairing case-specific. Since the
agent needs to be tested in large-scale experiments, we identify
that 100 generations and 10 repetitions strike a good balance,
reaching a 20% relative performance improvement than the
(100, 5) parameter pair with a 16% increase in decision time.

D. Impact of Horizon

In its original implementation [20], the RHEA operates on
sequences of actions or macro-actions of a specific length.
In our implementation, as explained in IV-C1, the number of
macro actions is relatively dynamic, as every gene contains the
macro actions of a complete turn. Nevertheless, in experiments
thus far the number of genes (horizon) remained fixed and
expresses how far ahead (in player turns) the agent can
plan. Experiments thus far used a horizon of 5 player turns
(H = 5) based on preliminary testing and the intuition that
for a four-player game the current player should consider at
least every other player’s future turn as well as their own
future turn when making a decision. The assumption was that
decreasing the horizon to fewer player turns would prevent
the agent from devising complex strategies, while increasing
it to longer horizons would render its predictions inaccurate
(due to stochasticity of the forward models), or require much
more computational effort. The current experiment tests this
assumption by measuring the agent’s win ratio on different
horizon lengths. Furthermore, it examines how the number of
evaluation repetitions impacts performance when the horizon
varies. This experiment uses the best fitness from Section V-A
and the best mutation probability (MR100%→50%).

Figure 4a shows the distribution of game ending conditions
for various horizon lengths, at 10 evaluation repetitions and
100 generations. As results suggest, the optimal horizon length
seems to be 3 player turns (40.6% win rate), with 4 and 5
turns performing marginally worse (∼38%). Increasing the
horizon beyond 5 turns leads to a drop in performance and the
losses due to outbreaks or disease cubes increase dramatically.
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(b) 80 evaluation repetitions

Fig. 4: Ratios of each end-game outcome for different horizons
(i.e. number of player turns considered), after 100 generations
and with different numbers of evaluation repetitions.

This suggests that for long horizons, the agent loses its ability
to play defensively and manage the upcoming risks. Since
assessing risk can be done better if the agent has more repeti-
tions of the rollouts for state evaluation, Figure 4b shows how
the RHEA performs in the case of 80 evaluation repetitions
and 100 generations. As the results suggest, however, the best
performance remains at 5 rounds (47% win rate), with H = 6
and H = 4 coming very close. Notably, the performance
drop at longer horizons is less steep compared to Fig. 4a:
for H = 15 performance drops by 42% (relative to best
performance across H) at 10 evaluation repetitions versus a
drop of 33% at 80 repetitions. Looking at the distribution of
lost games, it seems that at H ∈ [3, 5] the version with 80
repetition primarily loses due to the player deck running out,
and manages to defend better against outbreaks (27% of lost
games were due to outbreaks for 80 repetitions at H = 5,
versus 37% for 10 repetitions at H = 3).

The main conclusion from these observations is that our
initial intuition was not far from the actual optimal value,
given the available computational resources. Furthermore, as
RHEA struggles to plan many turns ahead, it is evident that
the stochastic environment hinders long-term strategies. As an
exemplar collaborative game, Pandemic shows the types of
challenges that games of this type can pose to AI more broadly.
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Fig. 5: Win ratio of the baseline HPA and the best RHEA
agent in 104 games with random roles and random initial game
setups, for different number of players and difficulty levels.

E. Robustness of performance in random game setups

Based on the previous experiments, the best performing
agent uses p( fo,a+fc,m

2 ) as state evaluation, a variable mutation
rate MR100→50, and a horizon of 3 turns. Based on realistic
computational demands, we have concluded on an evolution-
ary setup of 100 generations and 10 simulations for assessing
each individual. This setup results in a 40.6% win rate (see
Fig. 4a) in the carefully selected set of ten initial game states
on which parameter tuning took place. This section instead
tests how the RHEA fares in a broad set of games, difficulty
settings, numbers of players, player roles and turn order.

Nine experiments are performed, for three different diffi-
culty levels (four, five or six epidemics included in the player
deck) and with two, three or four players. The number of
players is expected to affect the game’s difficulty, because it is
easier to coordinate with only one other player and because the
game state does not change as drastically (e.g. from infections)
between consecutive turns of the same player. Note that for
fewer players, the initial players’ hand is larger. Moreover,
in every game the player roles allocated is randomized: this
means that for two- or three-player games some roles will
not be present and in all games the turn order is different—
unlike the testbed setups where the roles’ order was always
the same. For each experiment, 104 random games are created
and played once by the best RHEA agent (described above)
and the baseline HPA agent. The average win ratio for each
experiment is presented in Figure 5.

As expected, the win rate of both RHEA and HPA is higher
with fewer players across game difficulty levels. The number
of epidemics (i.e. game difficulty) has a negative correlation
on the win rate of both algorithms, as does the number of
players. However, the number of epidemics has a more severe
impact on the RHEA (Pearson’s ρ = −0.86; p < 0.05) than on
the HPA (ρ = −0.57; p > 0.05), while the number of players
has a more severe impact on the HPA (ρ = −0.605; p < 0.05)
than on the RHEA (ρ = −0.43; p > 0.05). With two players,
the RHEA reaches win rates 3 to 6 times the respective win
rates of the HPA. For three players the differences become
starker, with the RHEA reaching win rates of 7.6 times (for
easy games) up to 20 times (for hard games) that of the
HPA. For four players the RHEA has at least 27 times the
win rate of HPA. It should be noted that at high difficulty
neither algorithm performs particularly well: the RHEA wins



IEEE TRANSACTIONS ON GAMES 10

in 6% of games with two players, 4% of games with three
players, and 1% of games with four players. At high difficulty
the HPA struggles to find any wins (1.3% for two players,
0.2% for three players); therefore, the RHEA outperforms HPA
significantly in hard difficulties, and can win some games with
four players while the HPA fails consistently.

We should note that in random easy Pandemic games with
4 players the RHEA performs at 19.7% win rate, while for the
same difficulty setting and number of players the same agent
reached 40.6% win rate on the ten testbed setups. The chosen
testbeds were admittedly among the easiest that the HPA
baseline could solve (as only the 103 initial setups with the
highest win rates for HPA were used for clustering). Moreover,
as explored in [10] the player order and the order of hidden
decks had a strong impact on the behavior of both RHEA and
HPA even when the same ten initial game setups were used.

VI. DISCUSSION

The extensive experimentation documented in Section V
demonstrated how a rolling horizon evolutionary algorithm
can enhance the performance of the hand-crafted baseline
agent for playing Pandemic, reaching win ratios as high as
6.3 times those of the baseline in the carefully crafted set of
initial game setups. However, such a performance comes at
a heavy computational cost; the trade-off analysis has shown
that a win rate of 39% can be reached by agents performing a
more realistic 0.5 to 0.6 seconds delay per decision. Moreover,
it is evident that performance increases at higher mutation
rates which indicates that the mutation operator chosen is
not disruptive. This is not surprising, as both the HPA which
instantiates (and repairs) the genes and the RPA which applies
the mutations are carefully defined and tightly controlled by
expert knowledge. That said, the improved performance of
RHEA shows that it can modify the expert knowledge baseline
substantially and can anticipate better the upcoming challenges
through multiple simulations of the forward model.

Most experiments in this paper used the same ten initial
setups throughout all the evaluation phases. These initial
setups afford a controlled environment on which extensive
parameter tuning can take place; during actual simulations the
only stochasticity comes from the epidemic cards which cause
discarded infection cards to be reshuffled and placed back on
the infection deck. While special care was taken to sample
representative games across the spectrum (fast games, easy
games, etc.), it should be noted that these initial setups were
all games that the baseline agent could at least potentially win.
When testing the RHEA in unknown game setups, varying the
number of players and difficulty of the game led to an expected
performance drop. However, in harder and less controlled
problems the performance of RHEA was even better than
the HPA baseline and managed to win some games in cases
where the baseline could win none. On the other hand, a
RHEA that starts from a more successful initial individual
(and uses it for repair) such as the A* algorithm of [35]
may lead to even better performance and will be explored in
future work. However, due to the slight differences between
the current testbed and that of [35] it is likely that A* is less

able to handle the higher branching factors introduced by the
operations expert role which adds more research centers on
the board that also lead to more traversal options.

This paper argues that collaborative board games pose a
novel challenge for gameplaying AI, however it should be
noted that all players in the current Pandemic RHEA are
controlled by a single agent. As we note in the introduction,
in such games devising a careful plan that is followed to the
letter by all players is the norm, which is very close to how
the one controller handles different players’ turns. That said,
it could be interesting to explore multi-agent collaboration,
which could also simulate individual goals and priorities.
Indicatively, collaborative agents have been tested in digital
games [36], [37] as well as in the team-based competitive
card game Hanabi [34]. Such a multi-agent collaboration AI is
better suited for games where players have both joint goals and
individual goals, such as Dead of Winter (Plaid Hat Games,
2014). Another interesting extension concerns human and AI
players collaborating in a Pandemic game, similar to [38]. The
main challenge in such a case would be designing an interface
for the AI to explain the plan and convince the human players
to follow it (and vice versa).

Extensions of this work could re-introduce certain aspects
of Pandemic which were omitted for the sake of simplicity,
namely the event cards that can be played out-of-turn and
three player roles (dispatcher, quarantine specialist, contin-
gency planner). Moreover, RHEAs could be implemented on
a less controlled action or state representation, e.g. allowing
evolution to choose which cards to share with other players, or
keeping previous plans intact (e.g. if another player is going
somewhere to share knowledge) when seeding the initial pop-
ulation. While preliminary experiments with multi-objective
evolution seemed to yield worse results, it is possible that a
larger population rather than a 1+1 evolutionary strategy could
result in better performance; this could allow an algorithm
such as NSGA-II [39] to create a Pareto front of optimistic
versus pessimistic tradeoffs. Finally, there is a wealth of
collaborative board games which could be tested with this or
similar approaches, from simple games with tractable state
representations such as Forbidden Island (Gamewright, 2010)
to games with several layers of stochasticity, inventory man-
agement and subsystems such as Zombicide (CMON, 2012).
As evidenced in this paper, the design patterns of collaborative
board games pose many challenges to AI and can lead to
breakthroughs which can inform other complex team-based
tasks beyond games (e.g. risk control or scheduling). The re-
cent introduction of the Tabletop Games Framework [40], that
includes Pandemic, promises that research on gameplaying AI
for different types of modern board games will remain strong.

VII. CONCLUSION

Collaborative board games pose new challenges to artificial
intelligence, as agents that handle decision-making in such
games must balance between short-term risk mitigation and
long-term winning strategies. As evidenced in this paper, a
Rolling Horizon Evolutionary Algorithm can perform well in
the Pandemic board game when its fitness strikes the right
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balance between pessimistic (to thwart losing) and optimistic
(to reward winning) state evaluations. The highly stochastic
nature of Pandemic is also shown to hamper performance
when the forward model is not re-initialized and re-evaluated
multiple times, as well as when the decision-making horizon
is set too far into the future. It should be noted that the
evolutionary algorithm operates on a fairly constrained space,
which limits its freedom to find novel strategies or control
low-level actions such as choosing which cards to discard
for moving to remote cities. Future work in collaborative
board game play should explore the tradeoffs between a more
expressive controller with fewer ad-hoc scripts and the vast
and stochastic possibility space that such games invoke.
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